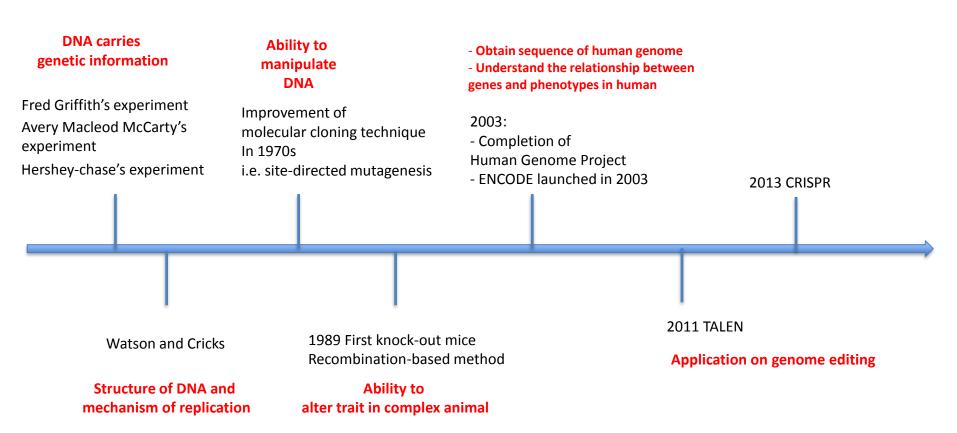



# Gene Editing: History and Development


Pang-Chui Shaw
School of Life Sciences
The Chinese University of Hong Kong

# What is gene editing

# **Parents** Children



# History of gene editing

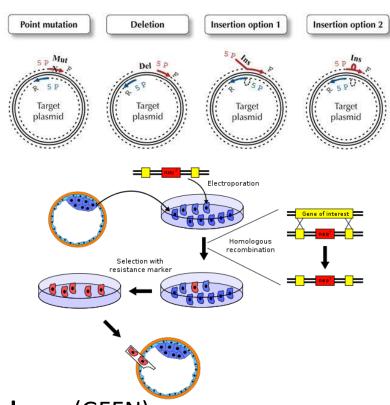


# Gene therapy vs gene editing

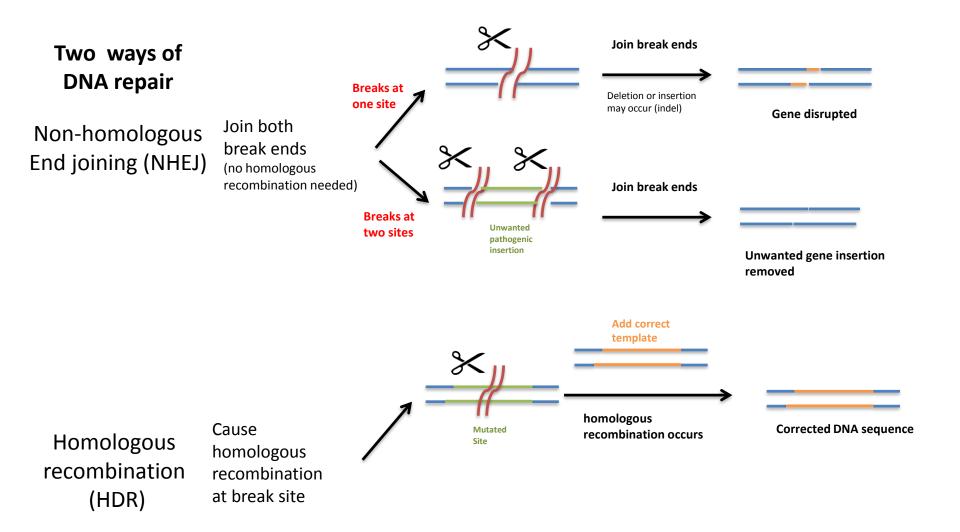
- Both are approaches to <u>introduce exogenous</u>
   <u>DNA sequences into host</u>
- Differences
  - Gene therapy
    - Gene carried on a vector (i.e. adenovirus or retrovirus) is introduced into human cell. Can be transient or permanent.
  - Gene/Genome editing
    - Modifying (i.e. addition, deletion or replacement) host genome at specific site.

# How to edit?

# Approaches in modifying DNA sequence

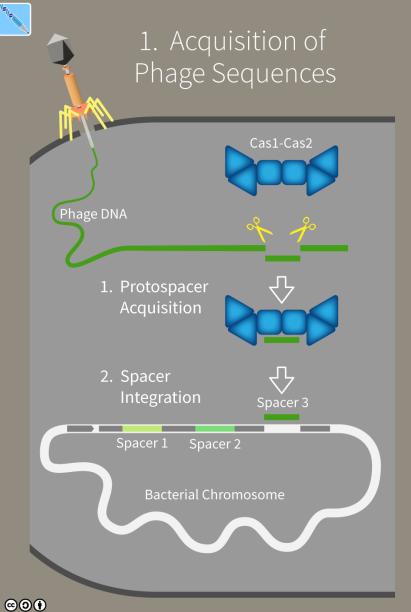

### Old approaches:

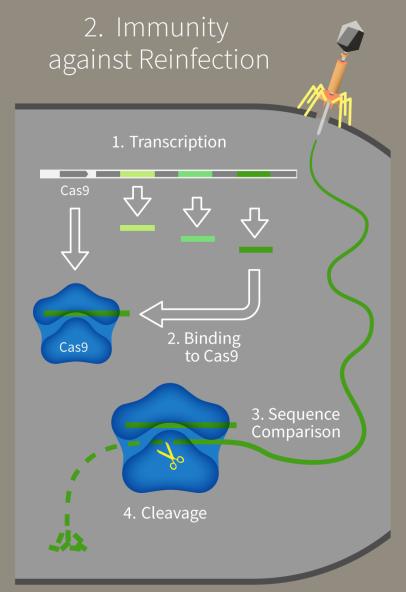
- Site directed mutagenesis (in simple organism)
- Recombination based methods (i.e. yeast, mouse)


### Latest approach:

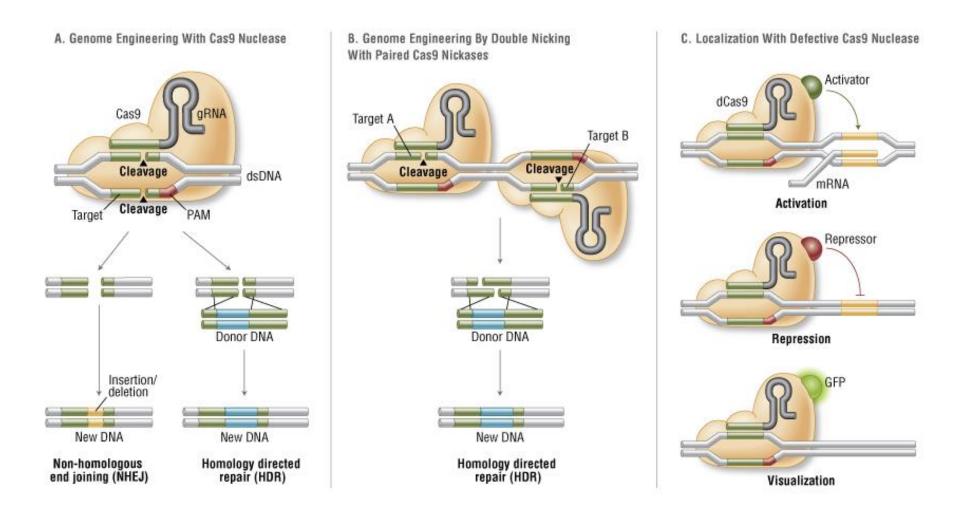
Genome editing with <u>engineered nuclease</u> (GEEN)







## Nuclease generates break and then...




# CRISPR – Cas9 system

- CRISPR: <u>c</u>lustered <u>r</u>egularly <u>i</u>nterspaced <u>s</u>hort <u>p</u>alindromic <u>r</u>epeats
- Cas9: <u>crispr</u> <u>associated</u> <u>protein</u> 9, an RNA-guided endonucleases
- Repetitive elements found in Bacteria and Archaea in mid-1990s
- Bacterial or archael adaptive immunity
   against invasion by foreign genetic elements
   from bacteriophages or plasmids





# **Applications of CRISPR-Cas9 system**



# Why CRISPR?

|                      | Other methods<br>(e.g. TALENs)              | CRISPR                                                                          |  |
|----------------------|---------------------------------------------|---------------------------------------------------------------------------------|--|
| Targeting efficiency | 1-50%                                       | >70% in zebrafish and plants, 2-<br>5% in iPSC, 78% in one-cell<br>mouse embryo |  |
| Nuclease             | Engineered specifically depending on target | Only need to design the gRNA                                                    |  |
|                      |                                             |                                                                                 |  |
| Versatility          | Low                                         | High (guide RNA can be designed readily for genomic screening)                  |  |
| Cost                 | High                                        | Low                                                                             |  |

A modified form of CRISPR nuclease may be used to edit RNA.

### nature biotechnology

# DNA-guided genome editing using the *Natronobacterium gregoryi* Argonaute

Feng Gao<sup>1</sup>, Xiao Z Shen<sup>2</sup>, Feng Jiang<sup>1</sup>, Yongqiang Wu<sup>1</sup> & Chunyu Han<sup>1</sup>

The RNA-guided endonuclease Cas9 has made genome editing a widely accessible technique. Similar to Cas9, endonucleases from the Argonaute protein family also use oligonucleotides as guides to degrade invasive genomes. Here we report that the Natronobacterium gregoryi Argonaute (NgAgo) is a DNA-guided endonuclease suitable for genome editing in human cells. NgAgo binds 5' phosphorylated single-stranded guide DNA (gDNA) of ~24 nucleotides, efficiently creates site-specific DNA double-strand breaks when loaded with the gDNA. The NgAgo-gDNA system does not require a protospacer-adjacent motif (PAM), as does Cas9, and preliminary characterization suggests a low tolerance to guide-target mismatches and high efficiency in editing (G+C)-rich genomic targets.

An alternative way to CRIPSR to edit human genome was proposed in 2016, yet its authenticity is in doubt.

Paper was retracted in August 2017.

### F. Gao et al. Nature Biotechnol.34, 768–773; 2016 Hebei University of Science and Technology





NATURE | NEWS





# Replications, ridicule and a recluse: the controversy over NgAgo gene-editing intensifies

As failures to replicate results using the CRISPR alternative stack up, a quiet scientist stands by his claims.

### **David Cyranoski**

08 August 2016 | Updated: 09 August 2016

# **Gene-Edited Animals**

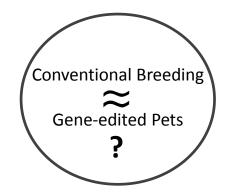
- A breed of Dalmatians lacks a working copy of a gene needed to clear uric acid
- Dog breeder told US FDA his plan to fix the single mutation with CRISPR in Jan 2017
- In February, FDA declared modified dogs cannot be sold or even given away
- FDA determined that, the portion of an animal's genome that has been intentionally altered, whether mediated by rDNA or modern genome editing technologies, is a drug because it is intended to alter the structure or function of the animal and, thus, subject to regulations.



"We cured this disease, but the FDA won't let us."

- David Ishee

Risk of misuse


Scientific Innovation

# **Gene-Edited Animals**

- In 2015, BGI (華大基因) showcased 'micropigs' in Shenzhen with intention of making them commercially available with US\$1,400 per animal
- TALENs (transcription activator-like effector nucleases) was used to disable growth hormone receptor gene in fetal cells
- In mid 2017, however, BGI officials say they will not be selling the pigs
- May be due to negative public sentiment in GMO and uncertainty in the regulations



Bama pigs, which weigh only 35-50 kg, are useful in studies of gut microbiota



# **Ethical issues**

- Ethical to gene edit animal? Sold it for research purpose? Sold it for pet?
- How is this compared to generating geneticengineered animal?
- How is this compared to generating animal of required trait by breeding?
- Are we too human centred in the judgement?

# **Examples of clinical trials**

| Identifier  | dentifier Phase Title |                                                                                                                                                                                                                                                                                                              | Status as of<br>October 2015 |  |
|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| NCT00842634 | Phase 1               | Autologous T Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases SB-728 for HIV                                                                                                                                                                                                             | Completed                    |  |
| NCT01044654 | Phase 1               | Phase 1 Dose Escalation Study of Autologous T Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases in HIV-Infected Patients                                                                                                                                                                  |                              |  |
| NCT01082926 | Phase 1               | Phase I Study of Cellular Immunotherapy for Recurrent/Refractory Malignant Glioma Using Intratumoral Infusions of GRm13Z40-2, An Allogeneic CD8+ Cytolitic T Cell Line Genetically Modified to Express the IL 13-Zetakine and HyTK and to be Resistant to Glucocorticoids, in Combination With Interleukin-2 |                              |  |
| NCT01252641 | Phase 1/2             | Study of Autologous T Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases in HIV-<br>Infected Subjects                                                                                                                                                                                      |                              |  |
| NCT02225665 | Phase 1/2             | Repeat Doses of SB-728mR-T After Cyclophosphamide Conditioning in HIV-Infected Subjects on HAART                                                                                                                                                                                                             | Active                       |  |
| NCT01543152 | Phase 1/2             | Dose Escalation Study of Cyclophosphamide in HIV-Infected Subjects on HAART Receiving SB-728-T                                                                                                                                                                                                               | Recruiting                   |  |
| NCT02500849 | Phase 1               | Safety Study of Zinc Finger Nuclease CCR5-modified Hematopoietic Stem/Progenitor Cells in HIV-1 Infected Patients                                                                                                                                                                                            |                              |  |

(adapted from Maeder and Gersbach, 2016)

### The First Man to Have His Genes Edited Inside His Body in November 2017

- For curing <u>Hunter syndrome</u>, a genetic disorder that causes a range of symptoms including joint stiffness, breathing problems, and developmental delay
- Iduronate-2-sulfatase in liver cells edited by Zinc finger nuclease





NATURE | NEWS

### CRISPR fixes disease gene in viable human embryos

Gene-editing experiment pushes scientific and ethical boundaries.

Heidi Ledford

02 August 2017 | Corrected: 03 October 2017

2017 – Oregon USA

Targeted a mutation in *MYBPC3* gene that cause the heart muscle to thicken

Chinese scientists fix genetic disorder in cloned human embryos

A method for precisely editing genes in human embryos hints at a cure for a blood disease.

**David Cyranoski** 

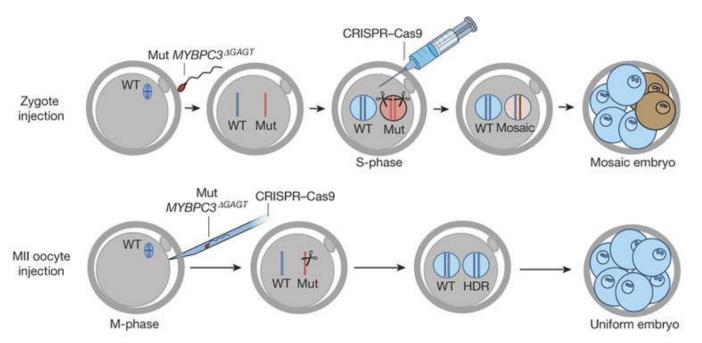
NATURE | NEWS

02 October 2017

2017 – Guangzhou, China

Targeted point mutation in *HBB* gene that leads to β-thalassaemia ('base editing')

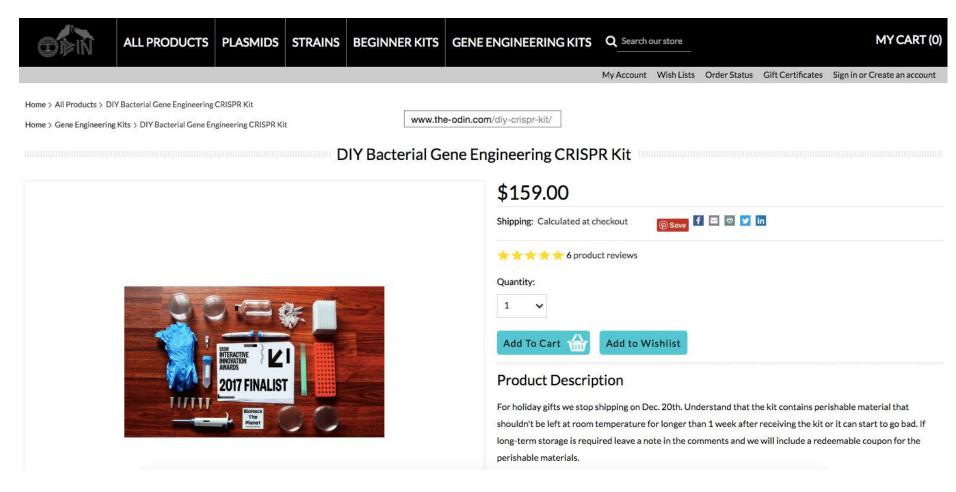
First to edit out the mutation responsible for a 'recessive' disease


In total **EIGHT** studies were published reporting gene editing in human embryos, **FIVE** since August 2017.

# **Closer Look – Human Embryos Editing**

- Single mutation in cardiac myosin-binding protein C (MYBPC3) can cause hypertrophic cardiomyopathy, which leads to heart failure
- Shoukhrat Mitalipov's team from Oregon
   Health and Science University isolated human
   single cell embryos and injected CRISPR/Cas9
   constructs to target the mutation in the
   MYBPC3 gene

# **Closer Look – Human Embryos Editing**


Two approaches were used



Genome editing occurs when sperm contains a single mutant copy, eliminating mosaicism

- The article claims **72.4%** of the resulting embryos had only the WT *MYBPC3* 

# **DIY Kit and self-experimentation**



Need a holiday gift idea?

# DIY Kit and self-experimentation

- Privately-funded labs, community labs, or even individuals can now perform **DIY** non-institutional biotechnology with ease
- Low cost and simplicity of CRISPR have opened DIY labs to gene-editing
- FDA had stressed in Nov 2017 that the sale of gene therapy kits is illegal
- However, it may not stop the sale and self-experimentation
  - Example: removal of myostatin gene by CRISPR

# DIY Kit and self-experimentation

- Myostatin, a gene for regulating muscle growth
- Josiah Zayner, a biochemist, injected himself with CRISPR system to remove myostatin gene
- J. Zayner: "This is the first of many people who will change their genomes. This will happen for medical reasons, for science, athletics or maybe just because people wanted to or were bored."
- Other biohackers are getting ready to tinker with their own genes









https://lambsharbinger.wordpress.com/2016/07/21/first-crispr-trial-in-humans-is-reported-to-start-next-month-stat/http://www.leuvenmindgate.be/news/genome-editing-is-picking-up-pace https://www.zazzle.com/crispr+gifts

# **Ethical issues**

- Less controversial in using gene editing for treatment?
- Acceptable for the change of germ line
- Acceptable for non-clinical changes?

Can gene editing be effectively regulated???

# Thanks for your attention